Cell Signaling Technology Logo
1% for the planet logo

Methyl-Histone H3 (Arg2) Antibody #9707

Filter:
  • WB

    Supporting Data

    REACTIVITY H
    SENSITIVITY Endogenous
    MW (kDa) 17
    SOURCE Rabbit
    Application Key:
    • WB-Western Blotting 
    Species Cross-Reactivity Key:
    • H-Human 

    Product Information

    Product Usage Information

    Application Dilution
    Western Blotting 1:1000

    Storage

    Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody.

    Protocol

    Specificity / Sensitivity

    Methyl-Histone H3 (Arg2) Antibody detects endogenous levels of histone H3 only when mono- and di-methylated at arginine 2. The antibody does not cross-react with other histones.

    Species Reactivity:

    Human

    Source / Purification

    Polyclonal antibodies are produced by immunizing animals with a synthetic methylated peptide corresponding to residues surrounding Arg2 of human histone H3. Antibodies are purified by protein A and peptide affinity chromatography.

    Background

    The nucleosome is the primary chromatin building block and consists of DNA wrapped around an octamer made of paired histone proteins H2A, H2B, H3, and H4. Chromatin remodeling plays a critical role in the regulation of various nuclear activities, including transcription. Histone proteins are targets of post-translational modification, including acetylation, phosphorylation, ubiquitination, and methylation. Modified histone residues are recognized and bound by chromatin modifiers and the transcription machinery to regulate gene expression (1-4). Protein arginine methyltransferases (PRMTs) methylate histone proteins at arginine residues to generate mono-methylated, symmetrically di-methylated, or asymmetrically di-methylated proteins. Asymmetrically di-methylated arginine residues are found on histone H3 (Arg2, 8, 17, 26, and 42), histone H4 (Arg3), and histone H2A (Arg3) proteins. Asymmetric methylation is carried out by type 1 PRMTs, which include PRMT1, PRMT2, PRMT4/CARM1, and PRMT6. These modifications are often associated with actively transcribed genes. Symmetric di-methylation of arginine residues are found on histone H3 (Arg2 and 8), histones H4 (Arg3), and H2A (Arg3). Symmetrically di-methylated histone arginine residues are generated by type II transferases PRMT5 and PRMT7, and are often associated with transcription repression (5-9). Arginine residues can also be deiminated by a peptidyl arginine deiminase (PADI) to form the non-coded amino acid citrulline. Conversion of arginine to citrulline prevents methylation of this residue and is thought to regulate histone arginine methylation levels (10-13).

    Alternate Names

    H3R2me1; histone modification; methyl histone

    For Research Use Only. Not for Use in Diagnostic Procedures.
    Cell Signaling Technology is a trademark of Cell Signaling Technology, Inc.
    All other trademarks are the property of their respective owners. Visit our Trademark Information page.